Salah satu metode dalam menyelesaikan suatu komputasi yang kompleks adalah dengan membagi proses komputasi menjadi beberapa bagian sederhana untuk kemudian menggabungkan hasil komputasi dari beberapa bagian tersebut. Dalam pembelajaran terbimbing (supervised learning), penyederhanaan komputasi dilakukan dengan mendistribusikan tugas pembelajaran kepada beberapa ahli (expert) yang mana akan membagi himpunan input menjadi beberapa sub himpunan input. Kombinasi ini lah yang akan menghasilkan apa yang disebut mesin komite (committee machine) atau lebih umum dengan committee neural network.
Pada dasarnya metode ini meleburkan pengetahuan yang diperlukan oleh beberapa expert yang terdapat dalam sistem untuk mendapatkan keputusan keseluruhan yang dapat dicapai oleh salah satu dari expert tersebut secara sendirian. Ide committee machine ini mulai dikenalkan oleh Nilsson pada tahun 1965. JST yang dibangun diasumsikan terdiri dari lapisan perceptron yang diikuti oleh perceptron pengambil keputusan pada lapisan berikutnya. Committee neural network adalah penafsir universal yang secara umum dapat diklasifikasikan menjadi dua kategori berdasarkan strukturnya, yaitu:
1. Struktur Statis
Pada tipe ini, tanggapan dari beberapa penafsir (expert) dikombinasikan dengan cara yang tidak melibatkan sinyal masukan karena sifat statisnya tersebut. Kategori ini terdiri atas dua metode yaitu:
- Ensemble averaging, yaitu dengan mengkombinasikan secara linier keluaran expert yang berbeda untuk mendapatkan keluaran keseluruhan. Pada metode ini tiap expert dilatih dengan data pelatihan yang sama, namun dengan kondisi inisial pelatihan yang berbeda. Metode yang paling sederhana adalah stacked generalization, yaitu ketika tiap expert dilatih secara independen untuk kemudian digunakan secara bersamaan, dengan konfigurasi diagram blok seperti pada gambar 1.